跳到主要內容

需求供給模型圖解

由於市場上最重要的兩個指標就是價量指標,但是,兩個指標卻無法同時控制,因此,我們必須將其中一個指標讓給買方或賣方來決定。

從基礎經濟學角度,對買賣雙方的基本決策定義,只有一個,那就是數量。

下圖當中,中間為市場,當中會出現價格指標(於縱軸)以及數量指標(於水平軸)。我們只有一個定義,那就是市場調查時,問

買方:你要買多少?
賣方:你要賣多少?



若要形成定義,絕不能只是這樣詢問,所以我們需要給予情境,因此,在數量定義前,需要三個條件:

  1. 一段時間內:要清楚說出是每日、每週、每月、每季,還是每年
  2. 其他條件不變:影響買賣雙方的非價格條件不同,所以寫在圖形的上方,代表是共同影響因素,只是左右開展出去,左邊為買方的非價格影響條件,右邊則是賣方的非價格影響條件
  3. 告知價格水準:同樣一種商品在市場上可能會有不同的價格,所以,全部都要詢問

此時,買賣雙方才能被詢問上面的問題。再詢問後,我們記錄下他們所說的數量,然後再加總起來,如此就是市場的供給量或需求量。

當條件還沒被打破前,價量之間的關係就會因為買賣雙方行為而有不同。
左邊的買方遇到價格飆漲時,會因為嫌貴而減少購買,此時,需求量減少。若出現跌價情況,買方覺得便宜而增加購買,此時,需求量增加。

這就是需求法則(Law of Demand)。反映在需求線上就是點在線上移動,亦即點a移動到點b。

右邊的賣方遇到價格飆漲時,會因為單價多賺而增加生產(或販售),此時,供給量增加。若出現跌價情況,賣方覺得成本無法回收而減少生產(或販售),此時,供給量減少。

這點在高麗菜與豬肉市場非常明顯。可惜的是,這兩種商品都是需要等候時間才能販賣,因此,才會有穀賤傷農的情形發生。

---

若條件被打破,也就是控制情境的其他條件可以改變,那麼市場上的買賣雙方就會有不同的反應。

在面對所有的價格水準都會發生這樣的事情!!

左邊的買方會因為廣告改變偏好、所得增加(剛好商品是正常財,愈多愈好)、其他商品價格提高(類似的商品價格比較貴)、未來商品會變貴,而增加購買商品數量。因此,在原本的需求線(D0)上的任何一點都會向右移動,代表購買的數量增加。這稱為需求增加 (Increase in Demand)。

如果是發生偏好改變不愛這商品(例如:有毒)、所得減少(商品是正常財)、其他商品價格下降與未來商品變便宜,那麼無論在任何的價格水準下,買方就會減少購買商品數量。在圖形上就會是原本的需求線(D0)上任何一點都會向左移動,代表購買數量減少,這稱為需求減少 (Decrease in Demand)。

右邊的賣方會因為技術進步、資金增加(因為原物料價格便宜)、其他商品價格下降(要賣就賣貴的),以及預期未來商品會變便宜,而增加生產(或販售)商品數量,因此,在原本的供給線(S0)上的任何一點都會向右移動,代表生產的數量增加,這稱為供給增加 (Increase in Supply)。

如果發生技術衰退、資金減少(原物料價格變貴)、其他商品價格漲價,以及預期未來商品會變貴,那麼賣方就會減少生產(或販售)商品數量,表現在圖形上就是原本的供給線(S0)上的任何一點都會向左移動,代表生產的數量減少,這稱為供給減少 (Decrease in Supply)。

需求增加(或減少),以及供給增加(或減少),同樣可以用點a移動到點b表示。只是需求增減或供給增減所產生點的移動,是給定特定價格水準,由原本曲線移動到新的曲線上。

這個網誌中的熱門文章

Durbin-Watson檢定與LM檢定的存在意義

每一本統計學、計量經濟學、時間序列分析、迴歸分析、市場預測的書籍都會提到資料自我相關問題。為了找到資料的自我相關性,有的學者從樣本相關係數出發進行資料的假設檢定,有的學者則是創造與樣本相關係數很相近的數學公式進行資料的假設檢定,其中,最知名的便是Durbin-Watson檢定與LM檢定(Breusch–Godfrey)。兩個檢定公式的出發點都是一樣的,那就是從迴歸分析的殘差出發。

Durbin-Watson檢定公式

LM檢定公式
從資料角度去看,無庸置疑的是資料的數值都是已知的,我們使用迴歸分析來瞭解資料間的因果關係。換言之,此時,解釋變數與被解釋變數之間是樣本條件關係。然而,我們卻遺忘了一件事情,那就是資料也是可以形成分配的,那就是抽樣分配。
既然資料可形成抽樣分配,這意味著解釋變數與被解釋變數都是抽樣分配,需要以分配的概念去解讀。於是,在統計學內就明確寫著: 每個樣本服從母體分配樣本的變異數一樣都是母體變異數樣本之間是無線性相關
同樣在迴歸分析的解釋變數、被解釋變數與誤差都有各自的母體分配,並且滿足上面的三個條件。同時解釋變數與被解釋變數之間可以是聯合關係,也可以是條件關係。
進一步推導所得到的係數、殘差、甚至是殘差的數學組合、變異數分析表內的SSR、SSE、MSR、MSE、自我相關係數都是抽樣分配。
請注意,這些都是隨機變數或隨機變數的數學組合,所以都是抽樣分配(只討論一個數字,不是分配)。當樣本數夠大時,才能夠代表母體分配(樣本要多大,沒人知道)。
所以要使用公式前,問問: 你確定資料的抽樣分配了嗎?你確定資料的抽樣分配轉換過程了嗎?(是數值的亂數表,不是機率生成的亂數表)隨機變數的數學組合之間有沒有成為函數關係?(例如自我相關係數與MSE)
當我們確定每一個轉換步驟狀況後,就可以觀察到解釋變數數值、解釋變數個數、誤差母體分配、樣本數、殘差限制對Durbin-Watson檢定與LM檢定的抽樣分配變化。
確實,Durbin-Watson檢定適合所有樣本大小,但是Durbin-Watson檢定的決策規則本身有問題,不符合統計公式的原則,那就是灰色地帶判定給虛無假設,因此只有虛無與對立假設的二分法,以及分配的臨界值只會有一個數字,而不會有所謂的上下界。除非沒有控制住解釋變數數值與殘差限制影響,才會讓這兩個影響融入分配當中,造成臨界值的不確定,產生了帶狀區間。
Dur…

經濟學的基礎 - 經濟循環圖概說

無論是基礎的經濟學、個體經濟學或總體經濟學,在前言總是會提到循環圖來讓學習者了解他們位在哪個地方。有趣的是循環圖總是無法全面性地展顯出來,甚至指引學習者知道他們該怎麼使用經濟循環圖。

Parkin在他所論著的經濟學教科書中,就將整個經濟循環圖展現出來。


就像是線上遊戲一般,初心者進入遊戲前總會來段開場動畫,告訴初心者所在的情境是怎樣。同樣地,完整的經濟循環圖內會包含四名角色、四個市場與金流方向。

四名角色:家計單位、廠商、政府與國外部門

如果沒有國外部門的話,那麼經濟循環圖就是封閉體系,如同清朝鎖國時期。
如果有國外部門的話,那麼經濟循環圖就是開放體系,如同台灣從早年至今的情況。

在圖上,四名角色可以在四個地方活動,也就是市場(Market)。

四個市場:勞動市場、商品市場、金融市場、外匯市場

在這邊的勞動市場只是要素市場當中的一種要素。
因為勞動的數量就為龐大,所以我在這邊將勞動市場指稱為要素市場的代表。

四種要素:勞動、資本、土地、企業家精神
四種報酬:工資、利息、地租、利潤

整個經濟循環圖,其實就是在講總體經濟的範圍。






學習經濟學的入門經驗

過去看過的經濟學教科書多是使用圖解、數學式來證實經濟學觀念的正確性,同時也讓學習者了解經濟學觀念的實用性。我常想如果能夠搭配電腦使用,達到經濟學觀念的實作演練,那不知該有多好?!

其實國外也有類似的教科書,只是深入一看,也都是根據經濟學的章節來撰寫內容。於是,我又想如果可以從本質著手,配合真實狀況,會不會更能夠將經濟學觀念的基礎說明得更加透徹?

經濟學最常見的區分方式就是個體經濟學(Microeconomics)與總體經濟學(Macroeconomics)。

所謂個體或總體,其實是從討論的對象(或角色)不同範疇而有所區隔。

個體經濟學是討論消費者(或生產者、政府)的經濟行為,而總體經濟學則是討論較大範疇,如國家、區域或全球的整合性經濟行為。於是,兩者的代表性指標就有所不同。


雖然個體經濟學與總體經濟學有所差異,但是,個體經濟學還是總體經濟學的基礎,所以,在新古典理論,常會提到個體基礎下的總體分析方法。

無論是先從總體的角度學習經濟學,或是先從個體角度學習經濟學,都是合宜且適用的。原因在於你選擇想先「見樹」再「見林」,還是先「見林」再「見樹」。

如果你選擇先「見樹」再「見林」,未免有以管窺天之虞,容易產生合成謬誤。如果選擇先「見林」再「見樹」,又難免犯了分割謬誤。

如此說來,好像怎樣做都不合適。那麼在這邊給初學者一個小小的建議,那就是投資理財上的一個觀念:

先見全盤(大盤走勢),然後觀看類股走勢,從強勢的類股中挑選一支值得你投資的股票。

或者是當你開車去某目的地前,先看看地圖,如同俯視一般了解大致的路況後,再上路,總比到了當地,在巷弄之間如無頭蒼蠅穿梭其中還來得好吧。

想避開分割謬誤,則可以如此思考:

並非一個類股下的所有股票都是強勢,開紅。

因此,當你了解整個經濟狀況後,再深入去看個體的經濟行為時,總是比較能夠抓出系統性的相同因素,剩下的就是個體自己的特殊因素在影響其決策了。