每一本統計學、計量經濟學、時間序列分析、迴歸分析、市場預測的書籍都會提到資料自我相關問題。為了找到資料的自我相關性,有的學者從樣本相關係數出發進行資料的假設檢定,有的學者則是創造與樣本相關係數很相近的數學公式進行資料的假設檢定,其中,最知名的便是Durbin-Watson檢定與LM檢定(Breusch–Godfrey)。兩個檢定公式的出發點都是一樣的,那就是從迴歸分析的殘差出發。
Durbin-Watson檢定公式

LM檢定公式

從資料角度去看,無庸置疑的是資料的數值都是已知的,我們使用迴歸分析來瞭解資料間的因果關係。換言之,此時,解釋變數與被解釋變數之間是樣本條件關係。然而,我們卻遺忘了一件事情,那就是資料也是可以形成分配的,那就是抽樣分配。